

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales)

Práctica 4

Cátedra Cabana

# Índice general

| 4. | EST  | TUDIO DE FUNCIONES Y REGLA DE L'HOPITAL | 2 |
|----|------|-----------------------------------------|---|
|    | 4.1. | Estudio de funciones                    | 2 |
|    | 4.2. | Regla de L'Hopital                      | 5 |
|    | 4.3. | Respuestas de la Práctica 4             | 6 |

## Práctica 4

## ESTUDIO DE FUNCIONES Y REGLA DE L'HOPITAL

#### Estudio de funciones 4.1.

Ejercicio 4.1. Realizar el análisis completo de las siguientes funciones f definidas por y = f(x) teniendo en cuenta:

- Dominio e Imagen;
- Asíntotas: verticales, horizontales y oblicuas;
- Extremos locales y puntos silla;
- Intervalos de crecimiento y decrecimiento;
- Graficar.

a. 
$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 1$$
 h.  $f(x) = 3x\ln(x)$ 

$$h. f(x) = 3x ln(x)$$

b. 
$$f(x) = x^3 - 3x + 1$$

i. 
$$f(x) = e^{x^2 + x}$$

c. 
$$f(x) = 3x^4 + 4x^3 - 12x^2 - 1$$

$$j. f(x) = xe^{-x^2 - x}$$

d. 
$$f(x) = x + \frac{4}{x}$$

k. 
$$f(x) = e^{1/x}$$

e. 
$$f(x) = -\frac{3}{(x-1)^2}$$

$$1. \ f(x) = x^2 ln(x)$$

f. 
$$f(x) = x\sqrt{9-x}$$

m. 
$$f(x) = e^{-x^2}$$

g. 
$$f(x) = \begin{cases} x^2 - 1 & \text{si } x \le 2 \\ 2(x - 3)^2 + 1 & \text{si } x > 2 \end{cases}$$
 n.  $f(x) = \frac{x}{1 + x^2}$ 

n. 
$$f(x) = \frac{x}{1+x^2}$$

$$\tilde{n}$$
.  $f(x) = \frac{1}{1-x^2}$ 

Ejercicio 4.2. De los siguientes ítems del ejercicio 1, calcular: raíces, conjunto de positividad y negatividad

$$-\ d,\ e,\ f,\ g,\ h,\ i,\ j,\ k,\ l,\ m,\ n,\ \tilde{n}$$

Ejercicio 4.3. En los siguientes ítems del ejercicio 1, calcular intervalos de concavidad positiva e intervalos de concavidad negativa y puntos de inflexión.

$$-a, b, c, d, e, f, g, h, i, k$$

**Ejercicio 4.4.** Dadas las siguientes funciones f definidas por y = f(x), indicar imagen, extremos absolutos y relativos en el dominio indicado en cada ítem. Graficar.

a. 
$$f(x) = x^5 - 20x + 2$$
,  $x \in [-2, 3]$ 

b. 
$$f(x) = x^5 - 20x + 2$$
,  $x \in [-1, 3]$ 

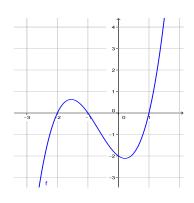
c. 
$$f(x) = \frac{x+1}{x^2+1}$$
,  $x \in \left[-1, \frac{1}{2}\right]$ 

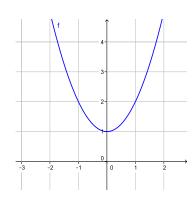
d. 
$$f(x) = \frac{2}{x^2 - 1}$$
,  $x \in [-2, 3]$ 

e. 
$$f(x) = sen^{2}(x), x \in [-\pi, 3\pi]$$

f. 
$$f(x) = \cos^2(\frac{x}{2}), x \in [0, 2\pi]$$

**Ejercicio 4.5.** Dado el gráfico de f'. Indicar el intervalo de crecimiento y decrecimiento de f, y extremos relativos.





a.

b.

**Ejercicio 4.6.** Graficar, si es posible, una función f que cumpla:

- f sea continua en  $\mathbb{R}$ .
- Tenga un mínimo local en x = -2 y un máximo local en x = 1.
- La imagen sea el intervalo [-2, 3]

Ejercicio 4.7. Indicar la cantidad de soluciones de las siguientes ecuaciones:

a. 
$$x^7 + 3x^5 + 2x + 1 = 0$$

b. 
$$e^x = 1 - x$$

**Ejercicio 4.8.** Sobre la orilla recta de un canal, se precisa limitar un terreno rectangular, alambrando los tres lados restantes. Hay que emplear 1800 m de alambre tejido . ¿Cuáles deben ser las dimensiones del terreno, para que tenga área máxima?

**Ejercicio 4.9.** Hallar el radio y la altura de un cilindro circular recto para que la superficie sea mínima y tenga Volumen de 1000  $cm^3$ . (Ayuda: volumen = área base x altura, área base =  $\pi r^2$  y longitud base =  $2\pi r$  con r el radio de la base)



**Ejercicio 4.10.** Con una hoja de cartulina de 80 cm de largo y 50 cm de ancho, se quiere construir una caja rectangular sin tapa, cortando cuadrados en las esquinas de la hoja. Calcular las dimensiones de la caja para que el volumen sea máximo.

**Ejercicio 4.11.** Dos móviles A y B se desplazan según las ecuaciones  $s_A(t) = t^3 - 3t^2 + 4$  y  $s_B(t) = t^2 - mt + n$ . Calcular:

- a. m y n para que en el instante t=4, A y B se encuentren en el mismo lugar y lleven la misma velocidad.
- b. La posición y velocidad en ese instante t=4.

Ejercicio 4.12. (Optativo) Un techador quiere fabricar una canaleta abierta de capacidad máxima, cuya sección tenga forma de trapecio isósceles. El fondo y los laterales deben ser de 10 cm de ancho. ¿Cuál debe ser la anchura de la canaleta en la parte superior?

**Ejercicio 4.13.** Una pelota lanzada hacia arriba, al cabo de t segundos alcanza la altura  $h(t) = 6 + 24t - t^2$ .

- a. Hallar la velocidad y la aceleración cuando t=2.4seg
- b. ¿A qué altura la velocidad se anula? Graficar h.

**Ejercicio 4.14.** (Optativo) Un barco se encuentra anclado a 9km del punto A más próximo a la costa. Es preciso enviar un mensaje a un campamento situado a 15km costa arriba de A. El mensajero, andando a pie, hace 5km/h y remando, 4km/h. ¿En qué punto de la costa debe desembarcar para llegar al campamento en el menor tiempo posible?

## 4.2. Regla de L'Hopital

**Ejercicio 4.15.** Analizar en que ítems se puede usarse la regla de L'Hopital. Resolver cada límite con el método adecuado.

a. 
$$\lim_{x \to 1} \frac{x-1}{\ln(x)}$$

h. 
$$\lim_{x \to +\infty} \frac{x + \sin(x)}{x}$$

b. 
$$\lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{\sin(x)}$$

i. 
$$\lim_{x \to \pi/2} \left[ \tan(x) \right]^{2x - \pi}$$

c. 
$$\lim_{x \to 0} \frac{1 - e^x}{x}$$

j. 
$$\lim_{x \to 1} (2x - 1)^{\cot(x-1)}$$

d. 
$$\lim_{x \to 1} \left( \frac{x}{x-1} - \frac{1}{\ln(x)} \right)$$

k. 
$$\lim_{x \to +\infty} (\ln(x))^{\frac{1}{1-\ln(x)}}$$

e. 
$$\lim_{x\to 0} [x \cdot \ln(\sin(x))]$$

$$\lim_{x \to +\infty} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}}$$

f. 
$$\lim_{x \to 0} x \cdot \left( e^{\frac{1}{x}} - 1 \right)$$

$$m. \lim_{x \to +\infty} \frac{e^x}{e^x - e^{-x}}$$

g. 
$$\lim_{x\to 0} \frac{e^x}{x}$$

$$n. \lim_{x \to 0^+} (\sin(x))^x$$

**Ejercicio 4.16.** Encontrar todas las asíntotas (vertical, horizontal y oblicua) de la siguientes funciones f definidas por y = f(x):

a. 
$$f(x) = x^2 \left( e^{\frac{1}{x}} - 1 \right)$$

b. 
$$f(x) = \frac{x-1}{\ln(x)}$$

c. 
$$f(x) = \left(\frac{3x+1}{2x+1}\right)^{\frac{2x+1}{x-3}}$$

d. 
$$f(h) = \frac{h}{e^h}$$

e. 
$$f(x) = (2x^2 - x^3)^{1/3}$$

**Ejercicio 4.17.** Realizar el análisis completo de las siguientes funciones f definidas por y = f(x) teniendo en cuenta lo indicado en el ejercicio 4.1:

a. 
$$f(x) = \frac{x}{\ln(x+1)}$$

b. (Optativo) 
$$f(x) = |x - 3|e^{-x}$$

#### 4.3. Respuestas de la Práctica 4

## **Ejercicio 4. 1.** a. Domf :R Imf: R

Asíntotas: No tiene

Intervalo de crecimiento:  $(-\infty, -3) \cup (2, +\infty)$ 

Intervalo de decrecimiento: (-3, 2)

En x=-3 hay un máximo relativo y vale  $\frac{29}{2}$  En x=2 hay un mínimo relativo y vale  $\frac{-19}{3}$ 

En  $\left(-\frac{1}{2}; \frac{49}{12}\right)$  hay un punto silla.

### b. Domf :R Imf: R

Asíntotas: No tiene

Intervalo de crecimiento:  $(-\infty, -1) \cup (1, +\infty)$ 

Intervalo de decrecimiento:(-1,1)

En x = -1 hay un máximo relativo y vale 3

En x = 1 hay un mínimo relativo y vale -1

En (0,1) hay un punto silla.

#### $[-33, +\infty)$ c. Domf :RImf:

Asíntotas: No tiene

Intervalo de crecimiento:  $(-2,0) \cup (1,+\infty)$ 

Intervalo de decrecimiento:  $(-\infty, -2) \cup (0, 1)$ 

En x = -2 hay un mínimo relativo y vale -33

En x=0 hay un máximo relativo y vale -1

En x = 1 hay un mínimo relativo y vale -6

En (-1,22; -19,36) y (0,55; -3,68) hay puntos silla.

#### d. Domf : $R - \{0\}$ $\operatorname{Imf}:(-\infty,-4]\cup$ $[4,+\infty)$

Asíntota Vertical: x = 0

Asíntota oblicua: y = x

Intervalo de crecimiento:  $(-\infty, -2) \cup (2, +\infty)$ 

Intervalo de decrecimiento:  $(-2,0) \cup (0,2)$ 

En x = -2 hay un máximo relativo y vale -4

En x=2 hay un mínimo relativo y vale 4

No tiene puntos silla.

#### e. Domf : $R - \{1\}$ $Imf:(-\infty,0)$

Asíntota Vertical: x = 1

Asíntota horizontal: y = 0

Intervalo de crecimiento:  $(1, +\infty)$ 

Intervalo de decrecimiento:  $(-\infty, 1)$ 

No tiene extremos

No tiene puntos silla

#### Imf: $(-\infty, 6\sqrt{3}]$ f. Domf : $(-\infty, 9]$

Asíntotas: no tiene

Intervalo de crecimiento:  $(-\infty, 6)$ 

Intervalo de decrecimiento: (6, 9)

En x = 6 hay un máximo relativo y vale  $6\sqrt{3}$ No tiene puntos silla.

g. Domf :
$$R$$
 Imf: $[-1, +\infty)$ 

Asíntotas: No tiene

No existe la derivada de f enx = 2

Intervalo de crecimiento:  $(0,2) \cup (3,+\infty)$ 

Intervalo de decrecimiento:  $(-\infty, 0) \cup (2, 3)$ 

En x = 0 hay un mínimo relativo y vale -1

En x=2 hay un máximo relativo y vale 3

En x = 3 hay un mínimo relativo y vale 1

No tiene puntos silla.

h. Domf : 
$$(0, +\infty)$$
 Imf:  $[-3e^{-1}, +\infty)$ 

Asíntotas: No tiene

Intervalo de crecimiento:  $(e^{-1}, +\infty)$ 

Intervalo de decrecimiento: $(0, e^{-1})$ 

En  $x = e^{-1}$  hay un mínimo relativo y vale  $-3e^{-1}$ 

No tiene puntos silla.

i. Domf : 
$$R$$
 Imf:  $[e^{-\frac{1}{4}}, +\infty)$ 

Asíntotas: No tiene

Intervalo de crecimiento:  $\left(-\frac{1}{2}, +\infty\right)$ 

Intervalo de decrecimiento:  $\left(-\infty, -\frac{1}{2}\right)$ 

En  $x = -\frac{1}{2}$  hay un mínimo relativo y vale  $e^{-\frac{1}{4}}$ 

No tiene puntos silla.

j. Domf :
$$R$$
 Imf: $[-1, \frac{1}{2}e^{-\frac{3}{4}}]$ 

Asíntota horizontal: y = 0

Intervalo de crecimiento:  $\left(-1,\frac{1}{2}\right)$ 

Intervalo de decrecimiento:  $(-\infty, -1) \cup (\frac{1}{2}, +\infty)$ 

En x = -1 hay un mínimo relativo y vale -1

En  $x = \frac{1}{2}$  hay un máximo relativo y vale  $\frac{1}{2}e^{-\frac{3}{4}}$ 

Tiene tres puntos silla: (-1.59; -0.62), (-0.34, -0.43), (0.93; 0.15) (resuelto con Geogebra).

k. Domf : 
$$R - \{0\}$$
 Imf:  $(0, 1) \cup (1, +\infty)$ 

Asíntota Vertical: x = 0

Asíntota horizontal: y = 1

Intervalo de decrecimiento:  $(-\infty, 0) \cup (0, +\infty)$ 

No tiene extremos

Punto silla:  $\left(-\frac{1}{2}, e^{-2}\right)$ .

l. Domf:
$$(0, +\infty)$$
 Imf:  $\left(-\frac{1}{2}e^{-1}, +\infty\right)$ 

Asíntotas: No tiene

Intervalo de crecimiento:  $\left(e^{-\frac{1}{2}}, +\infty\right)$ 

Intervalo de decrecimiento:  $(0, e^{-\frac{1}{2}})$ 

En  $x = e^{-\frac{1}{2}}$  hay un mínimo relativo y vale  $-\frac{1}{2}e^{-1}$ Punto silla:  $(e^{-\frac{3}{2}}, -\frac{3}{2}e^{-3})$ .

m. Domf:RImf: (0,1]

Asíntota horizontal: y = 0

Intervalo de crecimiento:  $(-\infty, 0)$ 

Intervalo de decrecimiento: $(0, +\infty)$ 

En x = 0 hay un máximo relativo y vale 1

Puntos silla:  $\left(-\sqrt{\frac{1}{2}}, e^{-\frac{1}{2}}\right)$  y  $\left(\sqrt{\frac{1}{2}}, e^{-\frac{1}{2}}\right)$ .

n. Domf :R Imf: $\left[-\frac{1}{2},\frac{1}{2}\right]$  Asíntota vertical: No tiene

Asíntota horizontal: y = 0

Intervalo de crecimiento: (-1,1)

Intervalo de decrecimiento:  $(-\infty, -1) \cup (1, +\infty)$ 

En x = -1 hay un mínimo relativo y vale  $-\frac{1}{2}$ 

En x=1 hay un máximo relativo y vale  $\frac{1}{2}$ 

Puntos silla:  $\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$ ,  $\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$  y (0, 0).

 $\tilde{\mathbf{n}}$ . Domf : $R - \{-1, 1\}$  Imf: $(-\infty, 0) \cup [1, +\infty)$ 

Asíntota vertical: x = -1 y x = 1

Asíntota horizontal: y = 0

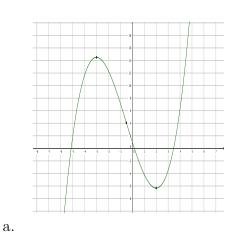
Intervalo de crecimiento:  $(0,1) \cup (1,+\infty)$ 

Intervalo de decrecimiento: $(-\infty, -1) \cup (-1, 0)$ 

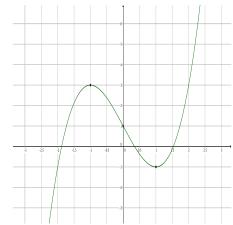
En x = 0 hay un mínimo relativo y vale 1

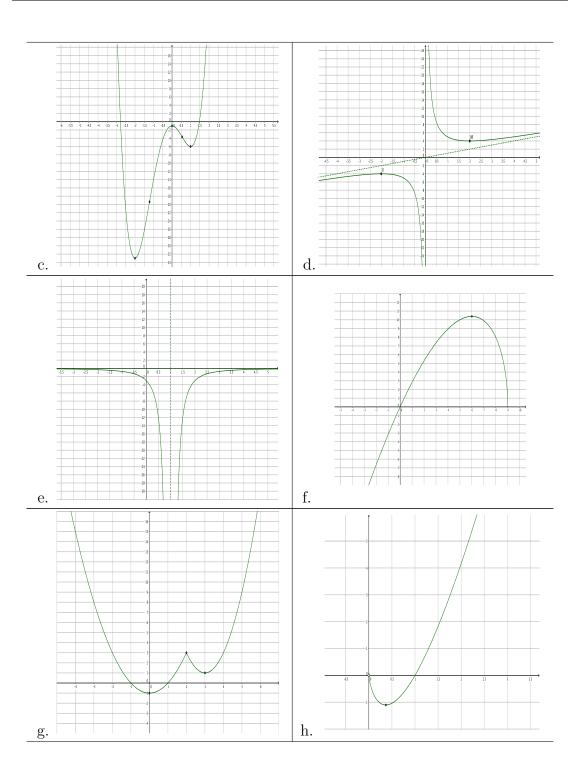
No tiene puntos silla.

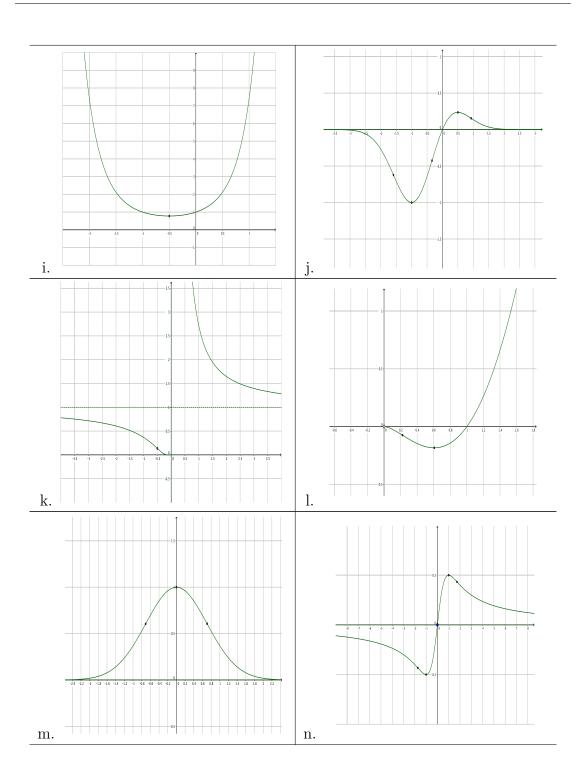
## Gráficos

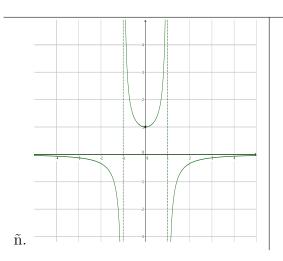


b.









Ejercicio 4. 2. Verificar con los graficos del ejercicio anterior.

**Ejercicio 4. 3.** a) Conc postiva:  $(-1/2, +\infty)$  Conc neg:  $(-\infty, -1/2)$ 

- b) Conc positiva:  $(0, +\infty)$  Conc neg:  $(-\infty, 0)$
- c) Conc posit.  $(-\infty, -1, 22) \cup (0, 55, +\infty)$  Conc neg : (-1, 22, 0, 55)
- d) Conc posit.  $(0, +\infty)$  Conc neg:  $(-\infty, 0)$
- e) Conc posit :  $\{\}$  Conc neg : R-1
- f) Conc posit :  $\{\}$  Conc neg :  $(-\infty, 9)$
- g) Conc posit : R Conc neg :  $\{ \}$
- h) Conc posit:  $(0, +\infty)$  Conc neg:  $\{\}$
- i) Conc posit: R Conc neg: { }
- k) Conc posit.  $(-1/2,0) \cup (0,+\infty)$  Conc neg: $(-\infty,-1/2)$

**Ejercicio 4. 4.** a)  $f(2^{1/2})$  es un mín absoluto. f(3) es un máximo absoluto y  $f(-2^{1/2})$  es un máximo relativo.

- b)  $f(2^{1/2})$  es un mín absoluto. f(3) hay un máximo absoluto.
- c) En  $x=2^{1/2}-1$  hay un máximo absoluto. En x=-1 hay un mín absoluto.
- d) f(0) es un máximo relativo.
- e) El máximo absoluto es 1 y se alcanza en  $x = k\pi$  con  $k \in \{-1, 0, 1, 2, 3\}$ . El mínimo absoluto es 0 y se alcaza en  $x = k\frac{\pi}{2}$  con  $k \in \{-1, 1, 3, 5\}$
- f) En  $x = \pi$  hay mínimo absoluto y vale 0. El máximo absoluto es 1 y se alcanza en x = 0 y en  $x = 2\pi$ .

**Ejercicio 4. 5.** a. Se puede deducir que la fórmula de la función es  $f(x) = \frac{1}{2}(x+2)(x+1)(x-2)$ . El máximo relativo es  $f(\frac{-\sqrt{13}-1}{3})$  y el mínimo relativo es  $f(\frac{\sqrt{13}-1}{3})$ . Luego, el intervalo de crecimiento es  $(-\infty,\frac{-\sqrt{13}-1}{3})U(\frac{\sqrt{13}-1}{3},+\infty)$  e intervalo de decrecimiento es  $(\frac{-\sqrt{13}-1}{3}, \frac{\sqrt{13}-1}{3})$ . b. Según el gráfico se observa que el mínimo absoluto es f(0) = 1. El intervalo

de crecimiento es  $(0, +\infty)$  y el intervalo de decrecimiento es  $(-\infty, 0)$ .

Ejercicio 4. 6. Proponer un gráfico y compartirlo en el foro.

Ejercicio 4. 7. a. La ecuación dada tiene una solución en el intervalo (-1, 0). b. La ecuación dada tiene una solución en el intervalo (-1, 1).

### Ejercicio 4. 8.

Para que el área sea máxima, el rectángulo tiene que ser de 450m por 900m.

Ejercicio 4. 9. 
$$r = \sqrt[3]{\frac{500}{\pi}} \approx 5,41$$
  
 $h = \frac{1000}{\pi} (\frac{500}{\pi})^{-\frac{2}{3}} \approx 10,83$ 

## Ejercicio 4. 10.

Para que el volumen sea máximo, la caja tiene que ser de 60cm x 30cm x 10cm.

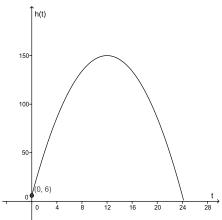
## **Ejercicio 4. 11.** a. m = -16, n = -60

b. La posición de ambos móviles en t=4 es 20 y la velocidad es 24.

## Ejercicio 4. 12.

**Ejercicio 4. 13.** a. 
$$v(2,4) = 19, 2$$
  $a(2,4) = -2$ 

b. h = 150



## Ejercicio 4. 14.

## **Ejercicio 4. 15.** a. 1

- b. No existe el límite.
- c. -1
- d. 1/2
- e. 0
- f. No existe el límite
- g. No se puede aplicar L'Hopital.
- h. No se puede aplicar L'Hopital. El límite es 1.
- i. 1
- i.  $e^2$
- k. 1
- l. 1
- m. No se puede aplicar L'Hopital
- n. 1

### Ejercicio 4. 16.

a. A.V. por derecha: 
$$x = 0$$
.

A.O.: 
$$y = x + \frac{1}{2}$$
.

b. No tiene asíntotas

## **Ejercicio 4. 17.** a. Domf: $(-1,0) \cup (0,+\infty)$

Asíntota vertical: No hay.

No tiene asíntota horizontal ni oblicua.

Intervalo de crecimiento:  $(-1,0)\cup(0,+\infty)$  No tiene extremos.

