ANÁLISIS MATEMÁTICO A (INGENIERIA Y CS. EXACTAS)(66) - Cátedra Cabana Primer Parcial 28/04/2025 - Tema 4

- 1. Sea $f:[-1;1]\to\mathbb{R}$ definida por $f(x)=e^{-4x^3+9x^2+12x}$. Determinar dónde se alcanzan el máximo y mínimo absolutos.
 - (a) (1 punto) máximo absoluto en $x = \dots 1$
 - (b) (1 punto) mínimo absoluto en $x = \dots -\frac{1}{2}$

Resolución:

$$f'(x) = e^{-4x^3 + 9x^2 + 12x}(-12x^2 + 18x + 12),$$
 $f'(x) = 0 \iff x = -\frac{1}{2} \text{ o } x = 2 \text{ (se descarta por no pertenecer al dominio)}$

Se comparan los valores $f(-1/2) = e^{-3,25}$, f(-1) = e y $f(1) = e^{17}$. Entonces en $x = -\frac{1}{2}$ alcanza un mínimo y en x = 1 un máximo absoluto.

2. (2 puntos) Calcular
$$\lim_{x\to 3} \frac{6x-18}{4\sqrt{x+1}-8} = \dots 6$$
.....

Resolución:

$$\lim_{x \to 3} \frac{6x - 18}{4\sqrt{x + 1} - 8} = \lim_{x \to 3} \frac{6x - 18}{(4\sqrt{x + 1} - 8)} \frac{(4\sqrt{x + 1} + 8)}{(4\sqrt{x + 1} + 8)} =$$

$$\lim_{x \to 3} \frac{(6x - 18)(4\sqrt{x + 1} + 8)}{(16x - 48)} = \lim_{x \to 3} \frac{6(x - 3)(4\sqrt{x + 1} + 8)}{16(x - 3)} = 6$$

3. Sean las funciones $f(x) = e^{\frac{1}{x}}$ y $g(x) = \sqrt{x-2}$.

Entonces:

- (a) (1 punto) la pendiente de la recta tangente al gráfico de la función fog(x) en x=3 es:..... $-\frac{1}{2}e$
- (b) (1 punto) la recta tangente al gráfico de la función fog(x) en x=3 es:

1

.....
$$y = -\frac{1}{2}ex + \frac{5}{2}e$$
.....

Resolución:

$$f\circ g(x)=e^{\displaystyle\frac{1}{\sqrt{x-2}}} \text{ su derivada es } (f\circ g)'(x)=e^{\displaystyle\frac{1}{\sqrt{x-2}}}(-\frac{1}{2})(x-2)^{-\displaystyle\frac{3}{2}} \text{ , as \'i la pendiente}$$
 de la recta pedida es $(f\circ g)'(3)=e^{\displaystyle\frac{1}{\sqrt{3-2}}}(-\frac{1}{2})(3-2)=-\frac{1}{2}e.$

Como $f\circ g(3)=e^{\dfrac{1}{\sqrt{3-2}}}=e,$ la recta pasa por el punto (3; e) entonces su ecuación es $y-e=-\dfrac{1}{2}e(x-3),$ equivalentemente $y=-\dfrac{1}{2}ex+\dfrac{5}{2}e.$

4. (1 punto) Sea la función
$$f(x) = \begin{cases} \frac{\cos(3-x) + 3x^2 - 28}{2x - 6} & x \neq 3\\ 5k - 1 & x = 3 \end{cases}$$
.

El valor de $k \in \mathbb{R}$ para que f resulte contínua es:

$$.....k = 2.....$$

Resolución:

$$f(3) = 5k - 1$$
 y el $\lim_{x \to 3} \frac{\cos(3-x) + 3x^2 - 28}{2x - 6} = \lim_{x \to 3} \frac{\sin(3-x) + 6x}{2} = 9$. Por lo tanto el valor de k debe ser 2

- 5. Sea la función $f(x) = 2 + \ln(3x) + \frac{18}{x^2}$
 - (a) (1 punto) sobre intervalos de crecimiento y decrecimiento:
 - \Box decrece en el intervalo (-6;6)
 - \Box decrece en el intervalo $(0; +\infty)$
 - \blacksquare crece en el intervalo $(6; +\infty)$
 - \Box crece en el intervalo (0;6)
 - (b) (1 punto)
 - \blacksquare en x=6 se realiza un mínimo
 - $\Box\$ en x=-6se realiza un máximo
 - \Box en x=-6se realiza un mínimo

 $\square \ \, \mbox{en} \,\, x=0$ se realiza un mínimo

(c) (1 punto) La imagen de la función es:

$$\Box$$
 [6; $+\infty$)

$$\square$$
 [8; $+\infty$)

$$\Box$$
 $[f(0); +\infty)$

$$\blacksquare$$
 $[f(6); +\infty)$

Resolución: El dominio de la función es $(0; +\infty)$

Calculamos su derivada para estudiar crecimiento, decrecimiento y extremos: $f'(x) = \frac{1}{x} - \frac{36}{x^3}$ $f'(x) = 0 \iff x = 6 \text{ o } x = -6 \text{ (este valor no pertenece al dominio, se descarta).}$

Se estudian los intervalos (0; 6) y (6 + ∞), se deduce que en (6; + ∞) f crece y x = 6 es un mínimo.

Como $\lim_{x\to +\infty} f(x) = +\infty$ se concluye que la imagen de f es $[f(6); +\infty)$.