Vectores

Unidad 1

Guía de Actividades

Álgebra A (62) Cátedra: Escayola

Conjuntos

Ejercicio 1. Dado el conjunto $A = \{1, 2, 3, 4, 5, 7, 11\}$, decidir si las siguientes afirmaciones son verdaderas o falsas.

- a) $5 \in A$
- b) $2 \notin A$
- c) $\{4,7\} \subseteq A$
- $d) \{1, 6, 11\} \subseteq A$
- e) $\{3,8\} \not\subseteq A$

 ${f Ejercicio~2}$. Decidir si las siguientes afirmaciones son verdaderas o falsas.

- a) $5 \in \{x \in \mathbb{Z} : 1 \le x \le 10\}$
- b) $\{\frac{1}{2}, 4\} \subseteq \{x \in \mathbb{Z} : 0 \le x \le 10\}$
- c) $\{\frac{1}{2}, 4\} \subseteq \{x \in \mathbb{R} : 0 \le x \le 10\}$
- d) $\{-1,1\} \subseteq \{x \in \mathbb{R} : x^3 = x\}$
- e) $\{-1,1\} = \{x \in \mathbb{R} : x^3 = x\}$

Ejercicio 3. Dados $A = \{1, 2, 3, 4, 5, 7, 11\}, B = \{6, 8, 10\}$ y $C = \{5, 6, 7, 8, 9\}$ describir por extensión los siguientes conjuntos.

- a) $A \cup B$
- b) $A \cup C$
- c) $B \cup C$
- d) $A \cap B$
- e) $A \cap C$
- f) $B \cap C$

- g) $(A \cap B) \cup C$
- h) $A \cap (B \cup C)$
- $i) (A \cup C) \cap (B \cup C)$ $j) (A \cap B) \cup (A \cap C)$

Ejercicio 4. Dados los conjuntos $A = \{\alpha, \beta, \gamma, \delta\}, B = \{\alpha, \beta, \epsilon\}, C = \{\alpha, \beta\} \text{ y } D = \{\gamma, \epsilon\},$ describir por extensión los siguientes conjuntos.

- a) $A \setminus B$
- b) $B \setminus A$
- c) $(A \setminus B) \cup B$
- d) $(B \setminus A) \cup A$
- e) $C \setminus A$

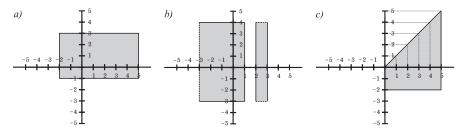
- f) $A \setminus C$
- g) $B \setminus D$
- $h) (A \setminus B) \cup (B \setminus A)$
- i) $(A \cup B) \setminus (A \cap B)$
- j) A^c , siendo $\mathcal{U} = \{\alpha, \beta, \gamma, \delta, \epsilon, \theta, \rho\}$ el conjunto universal.
- k) A^c , siendo $\mathcal{U} = \{\alpha, \beta, \gamma, \delta, \epsilon\}$ el conjunto universal.

Ejercicio 5. Graficar en el plano los siguientes conjuntos.

- a) $A = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 8, 1 \le y \le 4\}$
- b) $B = \{(x, y) \in \mathbb{R}^2 : 1 < x \le 8, 1 \le y < 4\}$
- c) $C = \{(x, y) \in \mathbb{R}^2 : 3 < x \le 5, 2 \le y < 3\}$
- d) $D = \{(x, y) \in \mathbb{R}^2 : 5 \le x \le 9, 2 \le y < 3\}$
- e) $A \setminus B$
- f) $A \setminus C$
- g) $A \setminus D$
- h) $C \setminus D$

- j) $A \cup C$
- k) $A \cap D$
- l) $A \cup D$
- m) A^c , siendo $\mathcal{U} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 10, 0 \le y \le 10\}$

Ejercicio 6. Describir por comprensión los siguientes subconjuntos de \mathbb{R}^2 .



VECTORES

Ejercicio 7. Dados los vectores $\vec{v} = (3, 2)$ y $\vec{w} = (-1, 4)$ en \mathbb{R}^2 :

- a) Graficarlos en el plano.
- b) Calcular y graficar los puntos $\vec{v} + \vec{w}$, $\vec{v} \vec{w}$, $-\vec{v}$, $2.\vec{w}$, $\frac{1}{2}.\vec{v}$ y $2\vec{w} \frac{1}{2}.\vec{v}$.
- c) Calcular $3.\vec{v} + 3.\vec{w}$ y $3(\vec{v} + \vec{w})$. ¿Qué le dice esto?
- d) Representar en un mismo gráfico los puntos $-2.\vec{v}$, $-\vec{v}$, $\vec{0}$, \vec{v} , $2.\vec{v}$. ¿Qué nota? ¿Qué características tienen los puntos de la forma $k.\vec{v}$ con $k \in \mathbb{Z}$ cualquiera? ¿Y los puntos $\lambda.\vec{v}$ con $\lambda \in \mathbb{R}$ cualquiera?

Ejercicio 8. Dados los vectores $\vec{v} = (1, 0, 0), \vec{w} = (1, 1, 0) \text{ y } \vec{u} = (1, 1, 1) \text{ en } \mathbb{R}^3$:

- a) Graficarlos en el espacio.
- b) Calcular y graficar los puntos $\vec{v} + \vec{w}$, $\vec{w} \vec{u}$ y $\frac{1}{2}\vec{u} \vec{v} + 2\vec{w}$.
- c) Sabiendo los extremos de los vectores $\vec{0}$, \vec{v} , \vec{w} y \vec{u} son vértices de un cubo, escribir las coordenadas de los otros cuatro vértices de dicho cubo.
- d) Hallar, si es posible, $\alpha, \beta, \gamma \in \mathbb{R}$ tales que $(1, -2, 1) = \alpha \cdot \vec{v} + \beta \cdot \vec{w} + \gamma \cdot \vec{u}$.

Ejercicio 9. Dados en \mathbb{R}^2 los vectores $\vec{v} = (1, 2)$, $\vec{w} = (-2, 5)$ y $\vec{u} = (3, -1)$:

- a) Graficarlos en el plano.
- b) Graficar $\vec{v}_1 = (-1, 2)$, $\vec{w}_1 = (2, 5)$ y $\vec{u}_1 = (-3, -1)$. ¿Qué efecto geométrico produce el cambiar el signo a la primera coordenada de un vector?
- c) Graficar $\vec{v}_2 = (1, -2)$, $\vec{w}_2 = (-2, -5)$ y $\vec{u}_2 = (3, 1)$. ¿Qué efecto geométrico produce el cambiar el signo a la segunda coordenada de un vector?
- d) Graficar $-\vec{v}$, $-\vec{w}$ y $-\vec{u}$. ¿Qué efecto geométrico produce el multiplicar a un vector por -1?

Ejercicio 10. Consideren en \mathbb{R}^2 el vector $\vec{t} = (4,2)$ y el triángulo cuyos vértices son los extremos de $\vec{v} = (-4,1)$, $\vec{w} = (-3,6)$ y $\vec{u} = (-1,7)$.

- a) Grafiquen todos los vectores en el plano.
- b) Grafiquen, con la misma escala, el triángulo cuyos vértices son los extremos de $\vec{v} + \vec{t}$, $\vec{w} + \vec{t}$ y $\vec{u} + \vec{t}$ y el triángulo cuyos vértices son los extremos de $\vec{v} \vec{t}$, $\vec{w} \vec{t}$ y $\vec{u} \vec{t}$. ¿Qué efecto geométrico produce sumar el vector \vec{t} a los puntos de \mathbb{R}^2 ? ¿Y restar el vector \vec{t} ?
- c) Grafiquen, con la misma escala, el triángulo cuyos vértices son los extremos de $2\vec{v}$, $2\vec{w}$ y $2\vec{u}$ y el triángulo cuyos vértices son los extremos de $\frac{1}{2}\vec{v}$, $\frac{1}{2}\vec{w}$ y $\frac{1}{2}\vec{u}$. ¿Qué efecto geométrico produce multiplicar por 2? ¿Y por $\frac{1}{2}$?

Ejercicio 11. Dado un vector se le realizan dos operaciones consecutivas: primero se lo multiplica por un escalar (dilatación) y luego se le sumo otro vector fijo (traslación).

- a) Si se le aplican estas dos operaciones al vector $\vec{v} = (1,2)$ en \mathbb{R}^2 se llega al vector (-6,12). ¿Se puede saber cuál fue la dilatación y cuál la traslación?
- b) Si se le aplican las dos operaciones a $\vec{v}=(1,2)$ y $\vec{w}=(3,4)$ en \mathbb{R}^2 se llega a los vectores $\vec{v}_1=(-6,12)$ y $\vec{w}_1=(-5,13)$ respectivamente. ¿Se puede saber cuál fue la dilatación y cuál la traslación? Hallarlas.
- c) ¿Puede ser que luego de aplicar la misma dilatación y la misma traslación a los vectores $\vec{v} = (1,1)$ y $\vec{w} = (2,-4)$ se llegue a los vectores $\vec{v}_1 = (2,4)$ y $\vec{v}_2 = (-2,3)$ respectivamente?
- d) Si se le aplican las dos operaciones en \mathbb{R}^3 a $\vec{v} = (1,1,1)$ se llega a $\vec{v}_1 = (2,1,5)$. Mostrar que si λ es el escalar que da la dilatación, al aplicarla las mismas dos operaciones a $\vec{w} = (2,1,3)$ se llega a $(\lambda + 2, 1, 2\lambda + 5)$.

Ejercicio 12.

- a) Calcular y graficar el punto medio entre (los extremos de) $\vec{v} = (1,4)$ y $\vec{w} = (3,2)$ en \mathbb{R}^2 .
- b) Calcular y graficar el punto medio entre (los extremos de) $\vec{v} = (1,7,3)$ y $\vec{w} = (-1,3,0)$ en \mathbb{R}^3 .

Ejercicio 13. Dados los vectores $\mu = (1, 2)$ y $\chi = (1, 4)$. Calcular las coordenadas del vector $\vec{v} = \frac{1}{2} (\frac{1}{3}\mu + \frac{1}{5}\chi)$:

- a) De manera exacta.
- b) Aproximadas a tres cifras decimales.

PRODUCTO ESCALAR

Ejercicio 14. Calcular los siguientes productos escalares de vectores de \mathbb{R}^2 .

- a) $(1,-1)\cdot(2,4)$
- b) $(1,3) \cdot (-6,2)$
- c) $(1,2)\cdot(1,2)$ d) $(-1,0)\cdot(0,1)$

Ejercicio 15. Dados los vectores $\vec{v} = (1, -2, 2)$, $\vec{w} = (2, 0, 3)$ y $\vec{u} = (-1, -3, 2)$ en \mathbb{R}^3 calcular las siguientes operaciones.

- a) $\vec{v} \cdot \vec{w}$; $\vec{w} \cdot \vec{v}$.
- b) $(\vec{v} + \vec{w}) \cdot \vec{u}$; $(\vec{v} \cdot \vec{u}) + (\vec{w} \cdot \vec{u})$.
- c) $(3\vec{v}) \cdot \vec{w}$; $3(\vec{v} \cdot \vec{w})$.
- d) $\vec{v} \cdot \vec{v}$; $\vec{w} \cdot \vec{w}$.

¿Qué conclusiones sacan?

Ejercicio 16. Calcular la norma de los siguientes vectores.

- a) $(-3,4) \in \mathbb{R}^2$
- b) $(-1,1,1) \in \mathbb{R}^3$
- c) $(1, -2, -2, -1) \in \mathbb{R}^4$ d) $(1, 1, \dots, 1) \in \mathbb{R}^n$.

Ejercicio 17. Dados $\vec{v} = (3, -4)$ y $\vec{w} = (1, 2)$ en \mathbb{R}^2 :

a) Calcular

$$||\vec{v}||, \quad ||\vec{w}||, \quad ||\vec{v} + \vec{w}||, \quad ||\vec{v}|| + ||\vec{w}||, \quad ||2\vec{v}|| \quad \text{y} \quad ||\frac{1}{2}\vec{v}||.$$

- b) ¿Qué relación hallaron entre $||\vec{v}||$ y $||2\vec{v}||$? ¿Y entre $||\vec{v}||$ y $||\frac{1}{2}\vec{v}||$?
- c) ¿Qué relación hallaron entre $||\vec{v} + \vec{w}|| \le ||\vec{v}|| + ||\vec{w}||$?

Ejercicio 18. Calcular la distancia entre los puntos $\vec{v} = (2,5)$ y $\vec{w} = (1,3)$

- a) de forma exacta.
- b) redondeando con tres decimales de exactitud.
- c) redondeando con cinco decimales de exactitud.

Ejercicio 19. Calcular la distancia entre los puntos dados.

- a) (1,-3) y (0,0)
- b) (1, -3) y (4, 1)
- c) (1,2,3) y (4,1,2)
- d) (4, -2, 6) y (3, -4, 4).

Ejercicio 20. Determinar todos los valores de $k \in \mathbb{R}$ que verifican.

- a) $\vec{v} = (4, k) \text{ y } ||\vec{v}|| = 5.$
- b) $\vec{v} = (2, k, -1) \text{ y } ||\vec{v}|| = 2.$
- c) $\vec{v} = k.(2, 2, 1) \text{ y } ||\vec{v}|| = 1.$
- d) Los puntos P = (1, 1, 1), Q = (k, -k, 2) de \mathbb{R}^3 estén a distancia 2.

Ejercicio 21. Graficar en el plano los siguientes conjuntos.

- a) $\{(x,y) \in \mathbb{R}^2 : ||(x,y)|| = 1\}.$
- b) $\{(x,y) \in \mathbb{R}^2 : ||(x,y)|| \le 1\}.$
- c) $\{(x,y) \in \mathbb{R}^2 : ||(x,y) (1,1)|| = 1\}.$
- d) $\{(x,y) \in \mathbb{R}^2 : ||(x,y) (1,1)|| \le 1\}.$

Ejercicio 22. Calcular el ángulo entre los siguientes pares de vectores.

- a) (1,0) y (0,1)
- b) (1,2) y (-2,1). c) (1,1) y (0,1)
- d) (1,-1,0) y (0,1,1).

Ejercicio 23. Hallar todos los $k \in \mathbb{R}$ que verifican simultáneamente:

- a) la norma del vector (2, -2, k) es igual a 3.
- b) el ángulo entre los vectores (2,1,1) y (1,-1,k) es $\frac{\pi}{2}$.

Ejercicio 24.

- a) Dar todos los vectores de \mathbb{R}^2 cuya norma es 2 y el ángulo que forman con el semieje positivo de las x es $\frac{\pi}{6}$.
- b) Dar todos los vectores de \mathbb{R}^3 que verifican que la norma es 3 y los tres ángulos que forma con los semiejes positivos son iguales.

Ejercicio 25. Determinar si los siguientes pares de vectores son ortogonales o no.

- a) (1,-1) y (2,4)
- b) (1,3) y (-6,2)
- c) (1,2) y (1,2).

- d) (1,3,5) y (3,0,-2)
- e) (-1,2,1) y (6,1,4)
- f) (2,4,-2),(-3,-6,3).

Ejercicio 26. En cada caso, hallar:

- a) tres vectores distintos de \mathbb{R}^2 que sean ortogonales a (2,3). ¿Qué relación encuentra entre los vectores hallados?
- b) todos los vectores de \mathbb{R}^2 que son ortogonales a (2,-2) y tienen norma 1.
- c) dos vectores no nulos de \mathbb{R}^3 ortogonales a (1,2,1) que no sean paralelos entre sí.
- d) tres vectores distintos de \mathbb{R}^3 que sean ortogonales a (1,2,1) y (1,-3,0) simultáneamente. ¿Qué relación cumplen entre si?

Ejercicio 27. Para vectores $\vec{v}, \vec{w}, \vec{u}$ en \mathbb{R}^n , decidir cuales de las siguientes afirmaciones son verdades y cuales falsas.

- a) Si \vec{v} es ortogonal a \vec{w} entonces \vec{v} es ortogonal a $-\vec{w}$ y a $5\vec{w}$.
- b) Si \vec{v} es ortogonal a \vec{w} y a \vec{u} entonces \vec{v} es ortogonal a $\vec{w} + \vec{u}$ y a $3\vec{w} 2\vec{u}$.
- c) Si \vec{v} es ortogonal a \vec{w} entonces $\vec{v} + \vec{w}$ es ortogonal a \vec{w} .
- d) Si \vec{v} es ortogonal a \vec{w} y a $\vec{w} 3\vec{u}$ entonces \vec{v} es ortogonal a \vec{u} .

Ejercicio 28.

- a) Sean $\vec{v}, \vec{w} \in \mathbb{R}^2$. Sabiendo que $||\vec{v}|| = 1$, $||\vec{v} + \vec{w}|| = \sqrt{2}$, el ángulo que forma el vector \vec{v} , perteneciente al primer cuadrante, con el semieje positivo de las x es $\frac{\pi}{4}$ y el ángulo que forma $\vec{v} + \vec{w}$ con el semieje positivo de las x es $\frac{\pi}{2}$ hallar \vec{w} .
- b) Sean $\vec{v}, \vec{w} \in \mathbb{R}^3$. Sabiendo que el ángulo entre \vec{v} y \vec{w} es $\frac{\pi}{3}$, $||\vec{w}|| = 4$ y $\vec{v} \vec{w}$ es ortogonal a \vec{v} , calcular $||\vec{v}||$.

Ejercicio 29. Sean \vec{v} y \vec{w} dos vectores de \mathbb{R}^3 donde \vec{v} tiene norma 1 y $\vec{w} = (k, k-4, -k)$. Hallar el ó los valores de $k \in \mathbb{R}$ para que se cumplan simultáneamente las siguientes condiciones:

- \vec{v} es ortogonal a $\vec{w} 2\vec{v}$
- El ángulo que forman \vec{v} y \vec{w} es $\frac{\pi}{3}$