- Ejercicio 1 (1.25 pto.)

Sabiendo que $\{(1,2,3),(1,6,5),(1,0,2)\}$ es linealmente dependiente, elegí la terna de valores que corresponde a los coeficientes de la combinación lineal igual al vector nulo.

A)
$$\lambda = 3, \mu = 2, \nu = -1$$

C)
$$\lambda = -3, \mu = 2, \nu = -1$$

B)
$$\lambda = 3, \mu = -2, \nu = 1$$

D)
$$\lambda = -3, \mu = 2, \nu = 1$$

Opción correcta: D)

Resolución

A partir de plantear la combinación lineal $\lambda \cdot (1,2,3) + \nu \cdot (1,6,5) + \mu \cdot (1,0,2) = (0,0,0)$ obtenemos el sistema homogéneo:

$$\begin{cases} \lambda + \mu + \nu = 0 \\ 2\lambda + 6\nu = 0 \\ 3\lambda + 2\mu + 5\nu = 0 \end{cases}$$

el cual tiene como solución no trivial que $\lambda = -3\nu$ y $\mu = 2\nu$, con ν pudiendo tomar cualquier valor con lo cual dándoles valores a este último tenemos que la única terna que es solución del sistema es $\lambda = -3$, $\mu = 2$, $\nu = 1$. Estos contenidos los podés encontrar en la sesión 4.

- Ejercicio 2 (1.25 pto.)

Considerá el subespacio que $S = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 - x_2 + 2x_3 = 0 \land x_4 = 0\}$. Elegí la terna de valores que hace que el vector $(\alpha, \beta, \gamma, 0, \gamma)$ pertenezca a S.

A)
$$\alpha = -2, \beta = 4, \gamma = 2$$

C)
$$\alpha = 2, \beta = 4, \gamma = 1$$

B)
$$\alpha = 2, \beta = -4, \gamma = 1$$

D)
$$\alpha = -2, \beta = -4, \gamma = 2$$

Opción correcta: C)

Resolución

De las ecuaciones que definen S, podemos notar que basta con que $\beta = \alpha + 2\gamma$ para que el vector pertenezca a S. La única terna que cumple esta condición es la C). Estos contenidos los podés encontrar en la sesión 4.

- Ejercicio 3 (1.25 pto.)

Indicá cuál de las siguientes expresiones describe el lugar geométrico de todos los puntos del plano cuya suma de distancias a dos puntos fijos $F_1 = (-6,3)$ y $F_2 = (2,3)$ es igual a 18.

C)

A)
$$\frac{(x+2)^2}{81} + \frac{(y-3)^2}{65} = 1$$

$$\frac{(x+2)^2}{81} - \frac{(y-3)^2}{65} = 1$$

B)
$$\frac{(x+2)^2}{65} + \frac{(y-3)^2}{81} = 1$$

D)
$$\frac{(x-2)^2}{65} + \frac{(y-3)^2}{81} = 1$$

Opción correcta: A)

Resolución

El lugar geométrico de los puntos cuya suma de distancias a dos puntos fijos llamados focos es constante, es una elipse. En la elipse que aquí se considera la suma de las distancias de cada punto a los focos 2a = 18 y la distancia entre los focos es 2c = 8. Teniendo en cuenta la relación trigonométrica entre los parámetros que definen una elipse: $a^2 = b^2 + c^2$, debe cumplirse que $81 = b^2 + 16$. Entonces $b^2 = 65$. El centro de la elipse es el punto medio del segmento $\overline{F_1F_2}$ de coordenadas C = (-2,3). Estos contenidos los podés encontrar en la sesión 5.

- Ejercicio 4 (1.25 pto.)

Una parábola tiene ecuación general $y^2 + 4x + \alpha y + \beta = 0$ y su vértice es V = (-2, 3). Elegí la única opción que muestra las coordenadas de su foco.

A)
$$F = (-1, 3)$$

B)
$$F = (-2, 4)$$

B)
$$F = (-2, 4)$$
 C) $F = (-2, 2)$ D) $F = (-3, 3)$

D)
$$F = (-3, 3)$$

Opción correcta: D)

Resolución

Conociendo las coordenadas del vértice podemos escribir la parábola en su forma canónica $(y-3)^2 = 2p(x+2)$. Del desarrollo de esta expresión resulta $y^2 - 6y + 9 = 2px + 4p$, que ordenada convenientemente será $y^2 - 2px - 6y + 9 - 4p = 0$. Podemos comparar términos semejantes con la expresión $y^2 + 4x + \alpha y + \beta = 0$ para así determinar que p = -2. También es posible determinar α y β , aunque estos valores no son necesarios para responder lo pedido. Para determinar las coordenadas del Foco hacemos $F = \left(-2 + \frac{p}{2}, 3\right)$, obteniendo $F = \left(-3, 3\right)$. Estos contenidos los podés encontrar en la sesión 6.

- Ejercicio 5 (1.25 pto.)

Considerá los vectores $\vec{v} = (v_x, v_y, v_z)$ y $\vec{w} = (-2, 2, 5)$. Si el punto medio entre los vectores es (-3,2,7), elegí la opción que muestra la norma del vector \vec{v} .

A)
$$\sqrt{101}$$

B)
$$\sqrt{62}$$

C)
$$\sqrt{185}$$

D)
$$\sqrt{492}$$

Opción correcta: A)

Resolución

Si (-3,2,7) es el punto medio entre los vectores, se pueden calcular las coordenadas de \vec{v} planteando que: $\frac{v_x-2}{2}=-3$, $\frac{v_y+2}{2}=2$, $\frac{v_z+5}{2}=7$. De estas ecuaciones se obtiene que $\vec{v}=(-4,2,9)$ y que su norma es $\sqrt{101}$. Estos contenidos los podés encontrar en la sesión 1.

- Ejercicio 6 (1.25 pto.)

Considerá los puntos (2,5,2) y (-k,9,k), $k \in \mathbb{R}$. Elegí la opción que muestra todos los valores de k de manera tal que la distancia entre los puntos sea 16.

A)
$$|k| \le 2\sqrt{29}$$

B)
$$|k| < 2\sqrt{29}$$

C)
$$|k| = 2\sqrt{29}$$

B)
$$|k| < 2\sqrt{29}$$
 C) $|k| = 2\sqrt{29}$ D) $|k| \neq 2\sqrt{29}$

Opción correcta: C)

Resolución

Si planteás la fórmula de distancia entre dos puntos, obtendrás la ecuación $(2+k)^2 + (5-9)^2 + (2-k)^2 = 16^2$, de donde se deduce que $|k| = 2\sqrt{29}$. Estos contenidos los podés encontrar en la sesión 1.

- Ejercicio 7 (1.25 pto.)

Considerá los puntos de \mathbb{R}^3 : (12,11,-9), (1,5,2) y (1,11,10). Indicá la única opción que muestra una afirmación verdadera.

- A) Con estos tres puntos no se puede construir un plano.
- B) La ecuación implícita del plano que contiene a los tres puntos es:-57x 44y 33z = 97.
- C) La ecuación implícita del plano que contiene a los tres puntos es:-57x + 44y 33z = 97.
- D) El plano que contiene a los 3 puntos tiene ecuación: $\overline{X} = \alpha(12, 11, -9) + \beta(1, 5, 2) + (1, 11, 10)$.

Opción correcta: C)

Resolución

A partir de los tres puntos dato, podemos obtener dos direcciones del plano, como resultado de hacer, por ejemplo: $\vec{v_1} = (1, 5, 2) - (12, 11, -9)$ y $\vec{v_2} = (1, 11, 10) - (12, 11, -9)$. En consecuencia, un vector normal a estas direcciones se obtiene realizando el producto vectorial $\vec{v_1} \times \vec{v_2} = (-114, 88, -66)$. Luego, usando uno de los tres puntos y este vector normal hallado, se puede obtener la ecuación del plano: -57x + 44y - 33z = 97. Estos contenidos los podés encontrar en la sesión 2.

- Ejercicio 8 (1.25 pto.)

Elegí la opción que muestra la intersección del plano de ecuación -x + z = 12 y la recta de ecuación $L = \{X : (1, 8, -1) + \lambda(5, 0, -2); \lambda \in \mathbb{R}\}.$

- A) $\{(-9, 8, 3)\}$
- B) $\{(9,11,-24)\}$ C) $\{(12,11,24)\}$
- D) Ø

Opción correcta: A)

Resolución

Usamos que los puntos de la recta L son de la forma: $(1+5\lambda, 8, -1-2\lambda)$. Luego, como queremos buscar si alguno de ellos también es punto del plano, veamos si alguno de estos puntos cumple la ecuación de este: $-(1+5\lambda)-1-2\lambda=12$ como esta ecuación solo se cumple para $\lambda=-2,$ el punto intersección es (-9, 8, 3). Estos contenidos los podés encontrar en la sesión 3.