- Ejercicio 1 (1,25 puntos)

Considerá la matriz
$$M = \begin{pmatrix} 0 & k & -k \\ k & 2 & 0 \\ 1 & 0 & k \end{pmatrix}$$

Elegí la única opción que indica el/los valores de k para el/los cual/es la matriz admite inversa.

$$A) \mathbb{R} - \left\{ -\sqrt{2}, 0, \sqrt{2} \right\}$$

C) Para todo número real k.

B) Para ningún número real
$$k$$
.

D)
$$\{-\sqrt{2}, 0, \sqrt{2}\}$$

Respuesta: A)

Resolución

Si se calcula el determinante de la matriz M, se obtiene la expresión $2k-k^3$. Esa expresión debe ser distinta de cero para que la matriz admita inversa y eso sucede solo para los reales distintos de $\{-\sqrt{2}, 0, \sqrt{2}\}$. Estos contenidos los podés encontrar en la sesiones 9 y 10.

- Ejercicio 2 (1,25 puntos)

Considerá las matrices:
$$A = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -2 & -6 \\ -1 & 3 \end{pmatrix}$ y $D = A^{-1} - B^t \cdot C$ Indicá la única opción que muestra el valor del coeficiente d_{12} de la matriz D .

A)
$$-\frac{11}{2}$$

D)
$$\frac{133}{4}$$

Resolución

Hallando primero la matriz traspuesta de B y la inversa de A podemos realizar las operaciones indicadas y continuar hallando todos los coeficientes de ${\cal D}.$ Resulta:

$$A^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{3}{4} \end{pmatrix} y B^t = \begin{pmatrix} 4 & -3 \\ 2 & 1 \end{pmatrix}$$

Luego se calcula $D = A^{-1} - B^t \cdot C$ y se obtiene que $d_{12} = \frac{133}{4}$.

Estos contenidos los podés encontrar en la sesión 8.

- Ejercicio 3 (1,25 puntos)

Considerá la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x_1; x_2; x_3) = (-x_1 + 4x_2 + x_3; x_1 + x_2 + x_3; -2x_1 + 3x_2)$$

Elegí la opción que muestra la dimensión de la imagen de T.

$$C)$$
 2

Resolución

Igualando el vector imagen al vector nulo tenemos $(-x_1+4x_2+x_3;x_1+x_2+x_3;-2x_1+3x_2)=(0,0,0)$ de donde obtenemos el sistema

$$\begin{cases}
-x_1 + 4x_2 + x_3 = 0 \\
x_1 + x_2 + x_3 = 0 \\
-2x_1 + 3x_2 = 0
\end{cases}$$

Resolviendo este sistema obtenemos que el núcleo de T está generado por (-3, -2, 5). Por lo tanto la dimensión del núcleo es uno. Por el Teorema de la dimensión sabemos que $\dim(Nu(T)) + \dim(Im(T)) = 3$, con lo cual la dimensión de la imagen será dos. Estos contenidos los podés encontrar en la sesión 12.

- Ejercicio 4 (1,25 puntos)

Considerá la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x_1; x_2; x_3) = (x_1 - 3x_2 + x_3; x_1 + x_2; -x_1 + 3x_2 - 2x_3).$$

Si C representa el cubo unitario, elegí la opción que muestra el volumen de la imagen de C por T.

A) 8

C) -4

Respuesta: B)

B) 4

D) -8

Resolución

Armamos la matriz asociada a T que es $\begin{pmatrix} 1 & -3 & 1 \\ 1 & 1 & 0 \\ -1 & 3 & -2 \end{pmatrix}$. Calculando el determinante de esta matriz tenemos que es A. V como Volumen de T(C) — (Volumen de C) | det(A) | tenemos la

matriz tenemos que es -4. Y como Volumen de T(C) = (Volumen de C) $|\det(A_T)|$ tenemos la respuesta. Estos contenidos los podés encontrar en la sesión 12.

- Ejercicio 5 (1,25 puntos)

Considerá $z \in \mathbb{C}$. Indicá la única opción que contiene una de las soluciones de la ecuación

$$z - 13i = 30z^{-1}$$

A) 0

C) -10i

Respuesta: D)

B) 1 + 13i

D) 3*i*

Resolución

A la ecuación $z-13i=30z^{-1}$ la podemos reescribir como $z^2-13iz=30$, o bien, $z^2-13iz-30=0$. Usando ahora la fórmula resolvente nos queda que: $\frac{13i\pm\sqrt{-49}}{2}=\frac{13i\pm7i}{2}$, de donde podemos leer que las soluciones son 10i y 3i. Luego, buscando entre las opciones, la única correcta es la D). Estos contenidos los podés encontrar en la sesión 13.

- Ejercicio 6 (1,25 puntos)

Considerá

$$z = 3i^{6}(3 - 3i)^{2} \cdot \left[\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right]$$

Indicá la única opción que muestra la forma polar de z

A) $54[\cos(\pi) + i\sin(\pi)]$

C) $-54[\cos(0) + i\sin(0)]$

B) $54[\cos(0) + i\sin(0)]$

D) $3\sqrt{18} \left[\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right]$

Respuesta: A)

Resolución

Resolviendo las operaciones indicadas, recordando que $i^2=-1$ nos queda: $z=3i^6(3-3i)^2\cdot\left[\cos\left(\frac{\pi}{2}\right)+i\sin\left(\frac{\pi}{2}\right)\right]=-3(-18i)(i)=54i^2=-54$. Por lo que la forma polar de z es $54[\cos(\pi)+i\sin(\pi)]$. Estos contenidos los podés encontrar en la sesión 13.

- Ejercicio 7 (1,25 puntos)

Considerá el polinomio $P(x) = x^6 + 6x^4 - 15x^2 - 100$ del cual se sabe que $\sqrt{5}i$ es raíz múltiple. Indica la única opción que muestra una expresión de P(x) como producto de polinomios irreducibles en $\mathbb{R}[x]$.

A)
$$P(x) = (x^2 + 5) \cdot (x^4 + x^2 - 20)$$

B)
$$P(x) = (x^4 + 25) \cdot (x+2) \cdot (x-2)$$

C)
$$P(x) = (x^2 + 5)^2 \cdot (x + 2) \cdot (x - 2)$$

D)
$$P(x) = (x^2 + 5)^2 \cdot (x^2 - 4)$$

Respuesta: C)

Resolución

En primer lugar debemos tener en cuenta que si $\sqrt{5}i$ es raíz de P(x) también lo es $-\sqrt{5}i$, en segundo lugar ambas deben tener el mismo grado de multiplicidad. P(x) resulta entonces divisible por $(x-\sqrt{5}i)^2 \cdot (x+\sqrt{5}i)^2$. Luego dividimos a P(x) por (x^4+10x^2+25) obteniendo el polinomio cociente (x^2-4) el cual puede expresarse como $(x-2)\cdot (x+2)$. Estos contenidos los podés encontrar en la sesión 14.

- Ejercicio 8 (1,25 puntos)

Considerá la ecuación

$$x^3(x+1) = 9(x+1) + 8x^2$$

Indicá cuál es la única opción que muestra todos los resultados de dicha ecuación en \mathbb{C} .

A)
$$\frac{-1+\sqrt{3}i}{2}$$
; $\frac{-1-\sqrt{3}i}{2}$

B)
$$\frac{-1+\sqrt{3}i}{2}$$
; $\frac{-1-\sqrt{3}i}{2}$; -3 ; 3

C)
$$-3;3$$

D)
$$0; -1; \frac{-9+3\sqrt{23}i}{16}; \frac{-9-3\sqrt{23}i}{16}$$

Respuesta: B)

Resolución

Aplicando propiedad distributiva, e igualando a 0 se obtiene la ecuación equivalente $x^4+x^3-8x^2-9x-9=0$. Por el Lema de Gauss deducimos que 3 y -3 son raíces de esta ecuación,por lo tanto $x^4+x^3-8x^2-9x-9$ es divisible por x-3 y x+3 Podemos llegar entonces a que $x^4+x^3-8x^2-9x-9=(x-3)\cdot(x+3)\cdot(x^2+x+1)$. Las raíces de la ecuación cuadrática $x^2+x+1=0$ son $x=\frac{-1+\sqrt{3}i}{2}$ y $x=\frac{-1-\sqrt{3}i}{2}$. Estos contenidos los podés encontrar en la sesión 14.